“Optimal” Information Encoding in Retinal Neural Population

20151109

-Lab Meeting-

Kevin Sean Chen
What the Frog’s “Sensory Population” Tells the Brain

Class 1. Sustained Edge detection.
Class 2. Convex edge detection.
Class 3. Changing contrast detection.
Class 4. Dimming detection.
Class 5. Dark detection.

Distinct Strategies in Visual Encoding

Coordinated dynamic encoding in the retina using opposing forms of plasticity

David B Kastner & Stephen A Baccus

Spatial Segregation of Adaptation and Predictive Sensitization in Retinal Ganglion Cells

David B. Kastner and Stephen A. Baccus
1Neuroscience Program
2Department of Neurobiology
Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA, USA
*Correspondence: baccus@stanford.edu
http://dx.doi.org/10.1016/j.neuron.2013.06.011
Adaptation and Sensitization in Separate Neural Populations

Increase Information Transmission Using Opposing changes in Firing Rate
Three Different Adaptive Fields in the Retina

Model for Sensitization
Critical and Maximally Informative Encoding

Critical and maximally informative encoding between neural populations in the retina

David B. Kastnera,b,1, Stephen A. Baccusc, and Tatyana O. Sharpeeb,d,2

aNeuroscience Program and bDepartment of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305; cComputational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; and dCenter for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, CA 92093

Edited by C

J Stat Phys manuscript No.
(will be inserted by the editor)

Jared Salisbury1,2 · Stephanie E. Palmer2

Optimal prediction and natural scene statistics in the retina
Bifurcation between maximally informative solutions

\[P(\text{spike} \mid x) = \left[1 + \exp \left(\frac{-(x - \mu)}{\nu} \right) \right]^{-1} \]

\[H(r \mid x) = -\int p(x) \sum_{i=1}^{2} \sum_{p_i=0}^{1} p(r_i \mid x) \log_2 p(r_i \mid x) dx. \]

Optimal dynamic range placement by fast Off populations
Adaptive FitzHugh-Nagumo Model

Dose OSR Imply Optimization of Predictive Information?